Objective-Subjective Correlation of Measurements of Audio Non-linearity

R Allan Belcher

Signal Conversion Ltd Swansea Wales, UK

email: rabelcher@signalconversion.com

Background

• Director at Signal Conversion Ltd

Cardiff University (to 2015): Professor EE University of California: Visiting Professor EE Swansea University: Lecturer electronic engineering (EE)

NHS: Senior Medical Physicist (Velindre hospital) BBC Engineering Research Department: Senior Engineer

Audio non-linearity Research

- When non-linearity is present in audio circuits or systems the quality of the reproduced sound may be impaired
- It would be convenient is some objective measure of the non-linearity could be used to estimate, with reasonable accuracy, the degree of subjective impairment that the reproduced sound would suffer
- This would then reduce the need for listening tests in the quality assessment of the systems
- It has long been recognised that the conventional total harmonic distortion measurements are not in good agreement with the results of subjective listening tests

Audio non-linearity Research

- A sine wave is the conventional test signal for measuring audio non-linearity but how often do we listen to sine waves?
- First investigations focussed on listening to the reproduced 1 kHz sine wave and relating the amplitude of the harmonics to their subjective annoyance value; THD is a linear sum of harmonic power
- 1950: Shorter "The influence of high order products on non-linear distortion"
- 1961: Wigan "New distortion criterion"

Weighting of harmonic powers

- Each concluded that the THD should be weighted so that higher order harmonics have more power. Though each had a different equation for the weighted THD they both recommended that the weighting of nth harmonic power is proportional to n².
- Theory (Brockbank and Wass)can predict the total distortion power T generated by a multi-tone (100) test signal if the nth harmonic power of a sine wave test is known (t_n).
- $T = 2^{n-1}$. n!. t_n and hence the harmonic weighting is n! 2^{n-1}
- N = 2, Wigan/Shorter 4; BandW 4;
- n = 3, Wigan/Shorter 9; BandW 24; (3.2.2.2)
- n = 4, Wigan/Shorter 16; BandW 192;(4.3.2.2.2.2)
- Multi-tone test signals may give better subjective-objective agreement but some distortion power may be lost in the measurement process and so reducing the weighting factor

Intermodulation distortion

- Distortion power measured when two or more sine waves are used as the test signal.
- Enables the complete audio bandwidth to be tested by sweeping the pair of tones over the frequency range
- Amplitude-probability density function may not be representative of real audio signals
- Special type of multi-tone signal (psuedo random 'noise') can be produced that is a good model of real audio signals so should give better subjective-objective agreement

Sine wave Amplitude Probability Density Function

Amplitude probability density function of pseudo random signal

Sensitivity

- We are more likely to hear amplitude nonlinearity for certain low level sounds
- Solo piano and is sensitive to low level amplitude non-linearity
- Orchestral recording much less sensitive to amplitude non-linearity
- Speech is a sensitive test for amplitude nonlinearity

CCIR 6 point impairment scale

The Six-Point Subjective Impairment Scale

GRADE	IMPAIRMENT
1	Imperceptible
2	Just perceptible
3	Definitely perceptible but not disturbing
4	Somewhat objectionable
5	Definitely objectionable
6	Unusable

Test circuits

	The Test Circuits
IUMBER	DESCRIPTION
1	Operational amplifier type '741
2	BBC transistorised amplifier type AM7/4
3	BBC thermionic amplifier type GPA/4A
4	Low-emission version of circuit 3

Publications

- BBC RD University of Surrey Collaborative PhD 1974-77
- Part of my Audio non-linearity research at BBC RD that generated BBC patent and award of 1976 IEE Gyr and Landis prize
- Researchgate.net : join to see my self archived audio related publications

Research gate

- Measurement of alternative ENOB without a sine wave (IEEE 2015)
- Audio non-linearity: A comb filter method for measuring distortion (BBC RD 1974)
- Audio non-linearity: an initial appraisal of a double comb filter method of measurement (BBC RD 1976)
- A new distortion measurement (Wireless World 1978)

Typical amplifier input-output gain

CCIR average program spectrum

Subjective-objective experiment relative gain control

THD test results for amplifiers 1-4

FM pre and de emphasis

Subjective-objective correlation amplifiers 1 and 2 with/without FM pre-emphasis

Subjective-objective correlation amplifiers 1 and 2 with/without FM pre-emphasis

Subjective impairment vs relative gain solo piano

Subjective impairment vs relative gain male speech

DCF Test signal generator

DCF test signal analyser

Spectra in DCF tests

THD vs relative gain amplifiers 1-4

DCF 'noise separation' vs relative gain

DCF circuits 1 and 2 with pre and de emphasis

- Double comb-filter noise-separation versus relative g for test circuits with pre and de-emphasis.

DCF circuits 1 and 2 without pre and de emphasis

Double comb-filter noise-separation versus relative gai: for test circuits without pre and de-emphasis.

THD for circuits 1 and 2 without pre and de emphasis

- Total harmonic distortion versus relative gain for test circuits without pre and de-emphasis.

THD for circuits 1 and 2 with pre and de emphasis

- Total harmonic distortion versus relative gain for test circuits with pre and de-emphasis.

Amplifier 3 and 4

Amplifier 3 and 4

How easy is to use it now for testing audio non-linearity?

Signal Conversion Ltd WinSATS software makes is easy.

- Any software that plays and captures digital audio waveform files from a sound card or iphone can make the files needed for the measurement
- The DCF method is also used for very high precision measurements of non-linearity in acoustic and electronic circuits

WinSATS and PC audio DCF measurement

Analogue to Digital Converter (ADC) test standards

IEC standard 60748-4-3 (Dynamic tests for analogue to digital converters) specifies a wideband routine test for non-linearity using two pseudo random signals.

Sometimes known as the Double Comb Filter (DCF) method.

DCF also used for testing circuits, microphones and loudspeakers

• All must have an ADC and digital signal processing.

DCF test method

In principle it offers unlimited precision in measuring in-band and out of band non-linearity.

- Coefficient values of non-linear transfer function can be determined.
- Waveform processing only: no FFT, low DSP overhead so minimum power

Digitally generated multi-tone test signals

DCF Multi-tone test signal: Pseudo random bit sequences

- Periodic Sequence of 1's and 0's
- Generated using *n* flip-flops with selective feedback
- Sequence length = 2ⁿ 1
- Multi-tone Spectrum is harmonics of base frequency
- Base Frequency = Clock frequency / Sequence length

Synchronous DCF test signal generator

Signal processing for DCF measurement

Test Signal Generator

Generator Waveforms

System Under Test

Distortion spectra generated by ADC/DAC under test appears *between* test signal and *on top* of test signal

Red comb filter aligned with Red prbs spectrum

• Red PRBS spectrum removed

Blue comb filter aligned with blue PRBS spectrum

Blue PRBS removed

Distortion Analyser

Distortion power measured in time domain; no windowing, fast as no FFT

Questions?

Contact information:

Allan Belcher

Email: courses@signalconversion.com

Signal Conversion Ltd Swansea Wales, UK

https://www.signalconversion.com

